Polymeric Electronic and Optical Dielectric Materials: Opportunities and Realities

James T. Yardley Electronic Materials Growth Center Morristown NJ 07962-1021

973-455-4676 jim.yardley@alliedsignal.com

Electronic Materials at AlliedSignal

Semiconductor Chip

Package

Printed Wiring Board Substrate

Component

AdvancedMicroelectronicMaterials

AlliedSignal
Substrate
Technology and
Interconnect.

- Laminate Systems
- Oak Mitsui

- Amorphous Metals
- Optical Devices

The Growth Center:

- Opportunity development through marketing and technology.
- Strategic interface with oem's, government, industry, professional societies, universities.

Electronics industry roadmaps drive business opportunity

Polymeric Materials for Electronic Device Fabrication

FLARETM, An Organic Polymer Dielectric for Integrated Circuit Interlayer Dielectric Applications.

F
$$\bigcirc$$
F + HO - R - OH \longrightarrow O - R - O \bigcirc FLARETM

 $Ar = R_1$ FLARE 1.0X $T_g = 270^{\circ}C$ $Ar = R_2$ FLARE 2.0 $T_g = >400^{\circ}C$

• High thermal stability. <1%/hour, 450°C.

- Low moisture absorption: 0.4%.
- Low dielectric constant: 2.43.

Opportunities for Integrated Circuit Manufacture - 2000

Nanoglass: Nanoporous silica for interlayer dielectrics.

Unique Properties

- SiO₂ with tunable porosity.
- Tunable dielectric constant: 1.3 2.5.
- Thermally stable to over 500°C.
- Narrow pore distribution ~ 20 nm.
- Excellent gap fill.
- Familiar chemistry and process.

Commercialization through Nanoglas LLC, a joint venture of AlliedSignal and NanoPore

Critical needs for electronic packaging identified in SIA National Technology Roadmap for Semiconductors, 1997

- Improved organic substrates for high I/O area array flip chip
 - Tg compatible with eutectic solder processing.
 - DK approaching 2.0.
 - Increased wireability at lower cost.
 - Lower TCE approaching 6.0 ppm/°C.
 - Lower moisture absorption.
- Improved Underfills for high I/O area array flip chip.
- Reliability limits of flip chip on organic substrates.
- Integrated design tools and simulators to address chip, package, and substrate complexity.

Opportunities for polymeric materials in electronic packaging abound!

Opportunities for polymeric materials in Electronic Packaging.

Electronic packaging roadmaps: Increased pin count and reduced package dimensions require paradigm shift in interconnection.

Opportunities for polymeric materials in Electronic Packaging.

Interconnect speed trends:

Opportunity: Advanced substrate materials to enable high density electronic packaging.

Challenges:

- Thermal stability.
- Moisture absorption.
- Thermal coefficient of expansion (Si=2 ppm/°C....Cu=18 ppm/°C).
- Dimensional stability.
- Lamination/build-up capability.
- Flame retardancyand many other things!

ASTI: AlliedSignal's new electronic packaging initiative

Electronic Packaging Evolution:

Chip scale pkg.

Chip on board

Unique technologies drive AlliedSignal packaging initiative

- High density circuitry from "layer pairs" give high yield.
- Conductive inks provide key to multilayer construction.
- UltrastableTM substrate materials drive thermal stability, processing ease, insensitivity to moisture.

Advanced Substrates for Electronic Packaging

New polymeric materials provide properties needed for future generations of electronic packages.

Typical substrate construction:

Higher speeds drive electronic industry toward optical interconnection.

Interconnect speed trends:

2010

2015

Semiconductor speed roadmap:

Opportunity: Polymeric optical interconnection for high speed communications.

Challenges:

2000

1995

Low optical loss.

2005

- Absorption.
- Scatter.
- Thermal stability.
- Precision control of dielectric constant (refractive index).
- •.....and many others....

AlliedSignal Polymeric Optical Interconnection Technology

• Low loss materials

- Passive interconnection
- High thermal stability

1989

• Aerospace specification

- Deployment in sensor systems
- -55C to +125C

• Parallel link

Optical backplane

• Single mode splitters

- Single mode passive interconnection
- Directional couplers

• Power splitter development

- Polymeric DWDM
- Parallel optial links

Polymeric Materials and Fabrication for Low Loss Optical Interconnection

Miscible monomers provide precise control of refractive index of cured polymer.

C seriesCE seriesCF series

Lithographic processing provides precise control of waveguide geometry.

Optical device properties determined primarily by geometry of writing process or photomask and by refractive indexes of materials - both of which can be precisely controlled

Polymer Optical Interconnect Technology: POINT (ARPA)

Optical Backplane System: FLASH (ARPA) and Obis (Navy)

Telecommunications roadmap transformed by optical interconnection and the internet.

Hypothesis: Polymeric materials can provide inexpensive components which can enable "fiber to the home".

Polymeric Single Mode Devices for Telecommunications

Single mode device fabrication using microlithography

 $\delta n = 0.0075$

Optical device modeling and characterization

AlliedSignal Molded 1X8 Single Mode Coupler

Polymeric gratings enable low-cost "fiber to the home" and suggest many other opportunities.....

Louay Eldada, Bob Norwood, Bob Blomquist, Mac Maxfield, Deepti Pant, George Boudoughian, and Constantina Poga.

Conclusions and commentary: NIST Programs

Opportunities for organic materials in electronic industry abound!

- Many needs exist for "passive" applications.
- Properly constructed consortia can drive significant new business development in the electronics industry (example ASTI of AlliedSignal).
- Some specific areas of opportunity include:
 - Optical interconnection.
 - Advanced electronic substrates.
 - Dielectric materials for semiconductor fabrication.
 - Electronic device packaging.

Realities must be recognized and addressed.

- Teaming of materials development with applications engineering within industry driver is critical.
- Business development activities must follow industry roadmaps....industry is evolutionary in nature.
- Timing is crucial: must be at the right place at the right time.
- Genuine business development commitment is critical for success of NIST programs (but note: business world changes rapidly).
- Credibility of organic materials is a barrier, especially where inorganic or semiconductor materials are current paradigm.
- Materials development must be sensitive to all of the application requirements should go hand in hand with applications development.
- Economic issues need to be understood and negotiated up front and must take into account evolution of marketplace.